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Abstract—Data provenance strives for explaining how the
computation was performed by recording a trace of the execution.
The provenance trace is useful across a wide-range of workflows
to improve the dependability, security, and efficiency of software
systems.

In this paper, we present INSPECTOR, a POSIX-compliant
data provenance library for shared-memory multithreaded
programs. The INSPECTOR library is completely transparent and
easy to use: it can be used as a replacement for the pthreads
library by a simple exchange of libraries linked, without even
recompiling the application code.

To achieve this result, we present a parallel provenance
algorithm that records control, data, and schedule dependencies
using a Concurrent Provenance Graph (CPG). We implemented
our algorithm to operate at the compiled binary code level
by leveraging a combination of OS-specific mechanisms, and
recently released Intel PT ISA extensions as part of the Broadwell
micro-architecture. Our evaluation on a multicore platform using
applications from multithreaded benchmarks suites (PARSEC
and Phoenix) shows reasonable provenance overheads for a
majority of applications.

Lastly, we briefly describe three case-studies where the
generic interface exported by INSPECTOR is being used to
improve the dependability, security, and efficiency of systems.
The INSPECTOR library is publicly available for further use in a
wide range of other provenance workflows.

1. INTRODUCTION

A data provenance-aware system gathers and reports
the lineage of execution. This allows the user to track, and
understand, how the computation was performed. The
provenance trace is useful for a wide-range of workflows to
improve the dependability, security, and efficiency of software
systems; including, program debugging [16], state machine
replication [18], compiler optimizations [19], incremental com-
putation [8], program slicing [31], memory management [22],
and dynamic information flow tracking [34], etc.

More specifically, the data provenance trace provides
an explicit intermediate program representation recording
control and data dependencies for a program execution.
Many existing systems provide support for data provenance
(details in 8IX); however, most existing solutions target
sequential programs (or at the granularity of the entire
process), while others that do support parallelism rely on
restrictive application-specific programming model. As a
result, the existing solutions have limited adoption in practice
for the general shared-memory multithreaded programs.

In this paper, we propose an operating systems-based ap-
proach to data provenance for multithreaded programs. More
specifically, we have the following three main design goals:

« Transparency: To support unmodified multithreaded

programs without requiring any code changes to
existing applications.
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o Generality: To support the general shared-memory
programming model with the full range of
synchronization primitives in the POSIX APL

« Efficiency: To impose low overheads by designing the
underlying provenance algorithm to be parallel as well so
that it does not limit the available application parallelism.

To achieve these goals, we present INSPECTOR, a data
provenance library for multithreaded programs. We
implemented INSPECTOR as a dynamically linkable shared
library. To run a program using INSPECTOR, the user just
needs to preload the INSPECTOR library, and then, run
the program as usual. Thus, our library supports existing
binaries without any code changes or re-compilation. The
library exports the provenance information to the perf
utility as an extended interface.

Our high level approach is based on recording data,
control, and schedule dependencies in a computation by
constructing a Concurrent Provenance Graph (CPG). The CPG
tracks the input data to a program, all sub-computations (a
sub-computation is a unit of the computation), the data flow
between sub-computations, intra-thread control flow, and
inter-thread schedule dependencies for the multithreaded
execution.

In this paper, we present a parallel algorithm to build the
CPG. Our algorithm leverages the Release Consistency (RC)
memory model [17] to efficiently record the inter-thread data
and schedule dependencies in a completely decentralized
manner. We implemented our algorithm as a dynamically
linkable shared library by leveraging process-level isolation,
MMU-assisted memory tracking, and Intel PT ISA extensions,
released recently as part of the Broadwell micro-architecture.
Furthermore, we extended the library to support a consistent
snapshot facility, where the user can analyze the provenance
on-the-fly while the program is still running.

In particular, we make the following contributions:

o We present a parallel algorithm for data provenance for
multithreaded programs that records control, data, and
schedule dependencies using a Concurrent Provenance
Graph (CPG) (8IV).

e We implemented our algorithm as a dynamically
linkable shared library, which we call INSPECTOR,
leveraging MMU-assisted memory tracking, process-
level isolation, and Intel PT ISA extensions. The
INSPECTOR library can be loaded and linked at run-time
as a replacement to the pthreads library, without any
recompilation of the application code (§V).

e We further extended the library to support a live
snapshot facility, where the user can analyze the
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provenance on-the-fly while the program is still running.
The library periodically takes a consistent snapshot [15]
of the CPG in a decentralized fashion (§VI).

We empirically demonstrate the effectiveness of
INSPECTOR by applying it to applications of PARSEC [12]
and Phoenix [33] benchmark suites. Our experiments show
that INSPECTOR incurs reasonable overhead to record data
provenance for a majority of applications (§VII).

Furthermore, we briefly describe three on-going projects
where the generic provenance interface exported by INSPEC-
TOR is being used to improve the dependability, security, and
efficiency of software systems (§VIII). INSPECTOR is an active
open-source project and the library is publicly available to
the research community for further use in other workflows.

II. OVERVIEW

We base our design on POSIX threads, commonly

referred to as pthreads, a widely used threading library
for shared-memory multithreading with a rich set of
synchronization primitives.
Basic approach. At a high level, we record data provenance
for a multithreaded execution by constructing a Concurrent
Provenance Graph (or CPG). Informally, the CPG records three
types of dependencies; namely, control, data, and schedule
dependencies for the multithreaded execution. To record
these dependencies, we divide thread execution into sub-
computations. We record the execution trace to construct the
CPG that tracks the data flow between the sub-computations,
control flow for each thread execution, and threads interleaving
or schedule dependency in the multithreaded execution.

More specifically, the Concurrent Provenance Graph
(or CPG) records a partial order O (N, —) among
sub-computations with the following property: given
a sub-computation n (where n € N) and the subset of
sub-computations M that precede it according to —, ie,,
M={MC N |Vm e M, m — n}, if the writes made by m
becomes visible to 1 then the partial order — captures this
possible data flow between sub-computations.

Example. Using a simple example (shown in Figure 1),
we next explain how we record these dependencies for
a shared-memory multithreaded program. The example
considers a multithreaded execution with two threads (T}
and Tp) modifying two shared variables (x and y) using a
lock. In the example, we assume that a thread execution
is divided into sub-computations at the boundaries of
synchronization primitives, such as lock () /unlock ().
(We explain the reason behind this design choice in §III.) We
identify these sub-computations as T;.2 and Tj.b for thread
Ty, and T;.a for thread T,. To understand the dependencies
that need to be recorded for the required partial order (—),
we showcase three cases for recording the control, schedule,
and data dependencies.

The first dependency that we need to record is the control
flow execution of each thread. In particular, we need to record
the intra-thread execution order of sub-computations. For
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Thread 1 (T}) Thread 2 (T»)
/*Tia*/ lock ();
if (flag==0)
read={y} X = ++y;
write={xy} else
X = (++y) +5;
unlock ();
N\
lock(); /*Ta*/
y=2%x; read={x}
unlock(); wrlte:{y}
e
/* Lb */ lock();
read={y} y=y/2;
write={y} unlock ();

Figure 1: An example of shared-memory multithreading.

example, sub-computation T;.b follows Tj.a, and therefore,
the control flow dependency records this partial order as
Ty.a — Tp.b. Additionally, we need to record the control
flow path taken within a sub-computation. For example,
sub-computation Tj.a has a conditional branch (if/else)
based on the value of flag. We supplement the control flow
dependency with all control paths taken by a thread within
each sub-computation; i.e., all branches taken at run-time.

Secondly, we need to record the inter-thread schedule
dependencies. The sub-computations can be interleaved
in different order across executions because of the non-
deterministic thread scheduling by the underlying OS. For
instance, when threads acquiring the lock in the reverse
order where thread T;.b gets to acquire the lock before T5.a.
In this case, the final value of y is affected based on this new
ordering. Therefore, we also need to record the schedule
dependencies between sub-computations as part of the
partial order. We record these schedule dependencies by
tracking interleaving of sub-computations by recording the
thread schedule (For example, Ty.a— Tp.a — T7.b).

Lastly, we need to record data dependencies between
sub-computations as a part of the partial order. For that,
we track read and write sets for each sub-computation,
ie., the set of memory locations read or written by the
sub-computation, respectively. The data dependencies
are recorded implicitly using read and write-sets, and
the partial order recorded using the control and schedule
dependencies: if we know what data is read and written by
each sub-computation, we can determine whether a data
dependency exists by following the partial order, ie. if a
sub-computation is transitively reading the data that was
modified by a sub-computation that precedes it in the partial
order — then there exists a read-after-write data dependency.

III. SYSTEM MODEL

Before we formally describe the provenance algorithm
(8IV), we first present the system model assumed by
INSPECTOR.

Memory consistency model. Our approach relies on the
use of the Release Consistency (RC) memory model [17],
which requires that all shared memory accesses are done
via synchronization primitives. For our purposes, this model



has the critical benefit of allowing us to restrict inter-thread
communication (i.e. shared memory accesses) to the syn-
chronization points. By reducing the number of points in an
execution where inter-thread communication can occur, we
avoid having to track individual load/store instructions,
which would be extremely inefficient with current hardware.

Note that the RC memory model is weaker than, for
example, the Sequential Consistency model (SC) [23], but still
guarantees correctness and liveness for applications that are
data race free. In fact, the semantics provided by INSPECTOR
is as restrictive as the POSIX specification [1], which mandates
that all accesses to shared data structures must be properly
synchronized using pthreads synchronization primitives.

Synchronization model. We support the full range of
synchronization primitives in the pthreads AP including
mutexes, cond_wait/cond_signal, semaphores, and barriers.
However, due to the weakly consistent RC memory model,
our approach does not support ad-hoc synchronization
mechanisms such as user-defined spin locks.

IV. DESIGN

In this section, we first formally define the CPG (§IV-A),
and then present the algorithm to build the CPG (§IV-B).

A. Concurrent Provenance Graph

We define the Concurrent Provenance Graph (CPG) as
a directed acyclic graph G = (V, E) with vertices (V)
and edges (E). The vertices of the CPG represent sub-
computations. The edges represent the dependencies between
the sub-computations.

Sub-computations. We define a sub-computation as the
sequence of instructions executed by a thread between two
pthreads synchronization API calls. We further divide each
sub-computation as sequence of code thunks, or thunks to
record the control path taken by the executing thread within
the sub-computation.

Dependencies. We distinguish between three kinds
of dependencies: control, synchronization, and data
dependencies. We next described these dependencies.

I: Control edges. Control edges are used to record the
intra-thread causal order between sub-computations of the
same thread based on their execution order. Furthermore,
we also record all control path taken by the executing thread
within each sub-computation during the execution at the
granularity of thunks.

We model the execution of thread t as a sequence of
sub-computations (L;). Sub-computations in a thread are
totally ordered based on their execution order using a
monotonically increasing thunk counter (x). We refer a
sub-computation of thread f using the counter « as an index
in the thread execution sequence (L), i.e., L¢[a].

We refer a thunk (L¢[«].A) as a sequence of instructions be-
tween two successive branches within each subcomputation.
We denote a thunk of sub-computation L¢[a] using a counter
p as an index in the sub-computation as L[«].A[f].
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II: Synchronization edges. Synchronization edges are used
to record the inter-thread causal order between sub-
computations based on the synchronization order between
threads. We derive synchronization edges based on the
ordering of synchronization operations (also known as a sync
schedule). In particular, we build on the observation that syn-
chronization primitives can be modeled as acquire and release
operations. That is, during synchronization, the synchroniza-
tion object is released by one set of threads and subsequently
acquired by a corresponding set of threads blocked on the
object [16]. For example, an unlock (S) operation releases
S and a corresponding lock (S) operation acquires it.

We derive the partial order based on the happens-

before relation (—) [16, 32] between acquire and release
operations. In particular, a release operation happens-before
the corresponding acquire operation. Formally, two sub-
computations L, [a1] and L[] are ordered by the
happens-before relationship (L(;)[t1] — L,)la]) if: (i)
they are sub-computations of the same thread (t; = t),
and L, )[a1] was executed before L)la]; (ii) Li,)[a1]
is a release and L) [a,] is corresponding acquire on the
same synchronization object S; (iii) due to transitivity if
L(tl) [061] — L(t3) [063] and L(t3> [ZX3} — L(tz) [Déz}.
III: Data-dependence edges. Data dependence edges records
the flow of data between sub-computations of the same or
different threads. We derive the data dependencies between
sub-computations using the read/write sets, and recorded
partial order in control and synchronization edges. For a
sub-computation L¢[«], the read-set (L¢[].R) and the write-set
(L¢[x].W) are the set of addresses that were respectively
read from and written to by the thread while executing the
sub-computation.

Essentially, data dependence edges establish the update-use
relationship between sub-computations. The update-use
relationship exists between two sub-computations if they can
be ordered based on the happens-before relationship, and the
write-set of the precedent sub-computations transitively inter-
sects with the read-set of the antecedent sub-computations.

B. Provenance Algorithm

At high-level, our algorithm records the multithreaded
execution to construct the CPG. Algorithm 1 presents the
overview of the provenance algorithm, and details of the
subroutines are presented in Algorithm 2.

Overview. The provenance algorithm (shown in
Algorithm 1) is executed by all threads in parallel. During
a thread execution, the thread traces memory accesses on
load/store instructions, and adds them to the read and
the write set of the executing sub-computation for deriving
data dependencies. Additionally, the executing thread
traces all branch instructions, and adds this information for
thunks of the executing sub-computation to record control
dependencies. The thread continues to execute instructions
until a synchronization primitive call is made to the
pthreads library. At the synchronization point, we define



Algorithm 1 Data provenance algorithm

Algorithm 2 Subroutines for the provenance algorithm

VS ¥ie{l,..,T}:Csli] «—0; // All sync clocks set to zero
executeThread(t)
begin
initThread(t);
while f has not terminated do
startSub-computation(instruction);
repeat
Execute instructionoff;
if (instructionis loador store) then
‘ onMemoryAccess(instruction);
end
if (instructionis branch then
‘ onBranchAccess(instruction);
end
until ¢ invokes synchronization primitive;
a<—a+1; // Increment sub-computation counter
// Let S denote invoked synchronization primitive

onSynchronization(S);

end

end

the end point for the executing sub-computation. Thereafter,
we let the thread perform the actual synchronization
operation. At synchronization points, the algorithm derives
control and synchronization edges at the granularity of sub-
computation by recording the happens-before order between
sub-computations. Finally, we start a new sub-computation
and repeat the process until the executing thread terminates.

Details. For the CPG, control and synchronization
dependencies are derived by happens-before ordering of
sub-computations. To do so, we use vector clocks (C) [27], a
widely used mechanism to generate a partial order of events
and to infer causality. Our use of vector clocks is motivated
by its efficiency for recording a partial order between sub-
computations in a complete decentralized manner instead of
having to serialize all synchronization events in a total order.

In particular, each thread maintains a vector clock, i.e., an
array/vector of size equal to the number of threads in the
system. During a synchronization event, the clock of the
thread performing the acquire operation is updated based on
the clock value of the thread performing the release operation.
More precisely, the vector clock is updated as follows: if a
thread t, acquires the synchronization object S released by
a thread #;, then each entry in f,’s vector is updated to hold
the maximum of its old value and the corresponding value
of t1’s vector at the moment of release.

To implement this mechanism, our algorithm maintains
vector clocks for three kinds of entities: threads,
synchronization objects, and sub-computations. A thread clock
(Cy) for a thread t tracks the local logical time of the thread,
which is incremented each time a new thunk is created. A
synchronization clock (Cg) for a synchronization object S acts
as a messaging medium between threads synchronizing on
S to update the thread clock. Finally, a sub-computation clock
(L¢[#].C) determines the position of the sub-computation
L¢[«] in the CPG, and is set to the clock value of the thread
while executing the sub-computation .

Based on the intuition developed so far, we next present the
subroutines used in the recording algorithm (see Algorithm 2).
Let T denote the number of threads in the system, which are
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initThread(t)

begin

«<—0; // Initializes sub-computation counter («) to zero
Vi€ {1,...,T}:Cli]«0; // t's clock set to zero

end

startSub-computation(instruction)

begin

B+—0; // Initialize thunk counter

Li[a].A[B] ¢ instruction;// Start new thunk
Ci[t]+w; // Update thread clock with sub-computation counter () value
// Set sub-computation clock value to thread t's clock
V(i€{1,.,T}):Lia].Cli] + Ce[i];

end
onMemoryAccess(instruction)
begin
// Update read/write sets of the executing sub-computation
if instructionis load then
‘ Ly[a].R< L[a].RU{pageID}; // On read access

else
‘ L¢[a]. W «— Ly[a]. WU{pageID}; // On write access
end
end
onBranchAccess(instruction)
begin
B« pB+1; // Increment thunk counter
L¢[a].A[B]+ instruction;// Add anew thunk

end

onSynchronization(S)

begin

switch Syncronization type do

case release(S):

// Update S’s clock to hold max of its and #'s clocks
Vie{1,..., T}:Csli] «max(Cs[i],Ci[i]);

sync(S); // Perform the synchronization

case acquire(S):

sync(S);

// Update t’s clock to hold max of its and S’s clocks
Vie{l,..,T}:Cli] «—max(Csli],Ct[i]);

end
end

numbered from 1 to T. Initially, each thread ¢ initializes (using
routine initThread(t))its monotonically increasing thunk
counter (x) and the thread clock (C;) to zero. In addition,
vector clocks (Cg) of all synchronization objects S are also
initialized to zero. In the beginning of a new thunk (using
routine startSub-computation ()), the clock value (Cy)
of the thread ¢ is updated based on the sub-computation
counter () to keep track of the local logical time of ¢. The
thread clock is updated by assigning the & to t* index of
the thread clock C;[t]. The updated value of thread clock
(Cy) is also assigned to the sub-computation’s clock (L¢[«].C).
Finally, the read set and the write set (L¢[T;].R/W) of the new
sub-computation are initialized to empty set.

During a sub-computation execution, we trace reads
and writes (using routine onMemoryAccess ()) at the
granularity of the memory pages (pageID), and update
the respective read /write set (L¢[T¢].R/W) of the executing
sub-computation.

Similarly, we also trace branch instructions (using routine
onBranchAccess ()), and update the thunk within the
executing sub-computation.

At synchronization points, we define the end of the
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current sub-computation, and therefore, we increment the
sub-computation counter («) by one. The executing thread
performs the synchronization operation (using routine on-
Synchronization ()). Recall that in our model, a synchro-
nization operation is either a release or an acquire operation.
Therefore, we handle onSynchronization () accordingly.
If it is a release operation on the synchronization object S by
the thread t, the releasing thread updates the synchronization
object’s clock (Cg) to hold the maximum of its own clock
value (C;) and the clock (Cg) of S. Then the releasing thread
performs the actual release operation on object S. Alterna-
tively, if its an acquire operation then the acquiring thread first
performs the acquire operation on object S. After the acquire
operation on the synchronization object S by thread t, the
acquiring thread updates its own clock (C;) to hold the maxi-
mum of the clock value (Cs) of S and its own clock value (Cy).
In this way, the synchronization clock (Cs) acts as a propaga-
tion medium to pass the vector clock value from the thread
doing the release to the thread doing the acquire operation.

In the end of the provenance algorithm, all sub-
computations (along with their read/write sets) have a
recorded value of sub-computation’s vector clock (L¢[«].C).
The standard comparison of vector clocks defines the
happens-before partial order, through which causal order is
derived between sub-computations.

V. IMPLEMENTATION

This section describes the architecture and implementation
of INSPECTOR. We implemented INSPECTOR as a dynamically
linkable shared library for the GNU/Linux OS that can be
loaded and linked at runtime for POSIX threads (replacing
the pthreads library). The application executables can
simply link the library (without any recompilation) either
using LD_PRELOAD or the —rdynamic flag, specifying the
path of the INSPECTOR library. The INSPECTOR library exports
the CPG as an extended interface in the perf utility for
supporting data provenance. The architecture of INSPECTOR
(shown in Figure 2) consists of two main components:
threading library (§V-A) and OS support for Intel PT (§V-B).
We next describe these two components in detail.

A. Threading Library

The threading library derives the data and schedule
dependencies. The architecture of the threading library is
shown in Figure 3.

Memory protection. A central challenge of the implementa-
tion of the algorithm is keeping track of the data dependencies
for the shared-memory accesses by all possible interleaving
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Figure 3: Architecture of the threading library.

threads. Since monitoring every load and store to each mem-
ory word would be too costly, we instead rely on the OS’s
(hardware-assisted) segmentation fault mechanism to keep
track of reads and writes at the granularity of memory pages.

To derive the read and write sets during sub-computation
execution, INSPECTOR uses standard memory protection
mechanism and signal handlers. In particular, INSPECTOR
protects the address space using mprotect (PROT_NONE)
at the beginning of each sub-computation. This forces a trap
(and the corresponding OS signal) the first time a page is
read or written to in a given sub-computation. The respective
signal handler, which is implemented by the INSPECTOR
library, records the information about the access, and also
resets the protection bits so that subsequent accesses to the
same page by the same thread in the same sub-computation
can proceed without generating a trap.

However, a naive page protection mechanism raises an
important problem because all threads in a process share the
same virtual memory structures (namely the TLB and page
table entries with the respective protection bits). This makes
it difficult to keep track of which threads are responsible for
which memory accesses or to enforce different protections for
different threads. Otherwise, we need to re-protect the page
after serving every load and store instruction causing a large
number of segmentation faults. To address this problem,
INSPECTOR implements threads as separate processes (an
idea proposed by Grace [4] and Dthreads [25]).

Threads as processes. INSPECTOR implements threads as
separate processes thus allowing each thread has its own
private address space and control over the virtual memory
structures. This gives us the ability to manipulate the page
protection of threads individually while providing a simple
way to implement the Release Consistency (RC) memory
model. In particular, INSPECTOR uses the clone system
call to fork off a new process on pthread_create (). The
process that implements the newly created thread (i.e., the
child process) already shares parts of the execution context
with the parent process (which implements the calling
thread) such as file descriptors and signal handlers.

But this raises a new problem, which is that, unlike threads,
processes do not share their address spaces. We address this
by taking advantage of the RC memory model we defined



for INSPECTOR, where threads share the updates only at the
synchronization points.

Shared memory commit. To implement the RC memory
model, we use shared memory commit (originally proposed
in distributed shared memory architectures such as
TreadMarks [20] and Munin [14]) that allows threads to
communicate at well-defined synchronization points. Our
shared memory commit is implemented using memory
mapped files. In particular, the virtual address ranges for the
shared portions (globals and heap) of the address space are
mapped to memory mapped files, which are managed by
the INSPECTOR library. These address ranges correspond to
the heap and the static (i.e., globals) regions. During thread
creation, INSPECTOR marks these address ranges as a private
copy-on-write mapping (using MAP_PRIVATE in mmap ()).
The effect of this is that whenever the child thread tries to
write to a memory location, the OS makes a thread-private
copy of the memory page containing the modification. At
synchronization points, the thread computes a diff for each
dirty page by performing a byte-level comparison between
the dirty page and the shared page. The deltas are then
atomically copied to the shared memory page; if there are
overlapping writes to the same memory location we resolve
them using a last-writer wins policy.

Input support. In addition to providing wrappers for
pthreads and malloc related API calls, we also imple-
mented shim layer for a number of input glibc library
calls to record the data-flow from the input. For instance,
we provide wrappers for mmap for reading the input. In
particular, the threading library differentiates between the
mmap calls made by the library itself and the target application.
This allows us to record the mapping of the input file in the
input address space. And, as described before, the library
uses mprotect () to derive the data flow from the input.

B. OS Support for Intel PT

To obtain the control flow dependencies, we use Intel
Processor Trace (PT) ISA extensions. We next present the
implementation details of the OS support for Intel PT.

Intel Processor Trace (Intel PT). Intel PT is an extension
of Intel Architecture that logs information about software
execution with minimal performance impact. The processor
collects information such as control flow, execution modes
and timings and formats it into highly compressed binary
packets. Traditionally, Intel architectures provided Branch
Trace Store (BTS) for tracing branch execution. However, BTS
was slow and imprecise. Therefore, it was not adopted in
practice. To overcome the limitations of BTS, Intel recently
introduced PT ISA extensions as part of the Broadwell (also
available in Skylake) micro-architecture.

OS support. The Intel PT tracing facility is integrated into the
operating system, which makes it possible to use different
trace buffers for different processes, and to make the facility
available for non-root users. In Linux this processor feature is
exposed to the user-space as a Performance Measuring Unit
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(PMU) in the perf event interface. We make use of the Intel
PT PMU to derive the control flow dependencies. Figure 4
shows the architecture for the OS support for Intel PT.

In particular, the perf interface on Linux consists of a
syscall, which gives back a file descriptor. Events are accessed
by obtaining buffers via mmap (2) and can be further
controlled via ioctl () syscall on the given file descriptor.
Along with interface the user-space perf allows to dump
and filter from these bulffers. In our case, this filtering is done
by using Linux control groups (also known as cgroups).
cgroups is a kernel feature to apply constraint like resource
usage to a group of processes. It has the property, that by
default every child process belongs to the same process as
its parent. Also for perf_eventssucha cgroup exists.

We create such a cgroup exclusively for the application
using INSPECTOR. This is done because our threading library
causes applications using threads to create multiple processes
instead, whose process ids are not known in advance.

The subcommand perf record is then used to dump
the trace produced by Intel PT. Intel PT generates a stream of
TNT packets, which denotes the conditional branches taken
and TIP packets for indirect branches and function returns.
The data is referenced as a sample event in the perf event
list and stored in a ring buffer called AUX area. If perf tool
cannot keep up with processor trace it is possible (for example
an interrupt occurs), there will be gaps in the trace. (We
provide a snapshot facility (§VI) to overcome this limitation.)

After execution the result can be further processed by
using a set of tools for example perf script.The branch
information is still in a compressed form and needs to be
decoded. We make use of the Intel Processor Decoder Library
for Intel PT that is integrated in the perf utility. To map the
trace onto binaries, it needs access to executables and linked
libraries of the application. For that, we track mmap events
to know the location of each loadable during the execution.

VI. SNAPSHOT MECHANISM

An additional challenge that we need to address in the
implementation of INSPECTOR is to deal with the excessive
log data produced by Intel PT, especially for long running
applications. Therefore, we further extend the library to
support a live snapshot facility, where the user (or an
application using INSPECTOR) can analyze the provenance
on-the-fly while the program is still running. Thus, the
snapshot facility provides a practical alternative to restrict
the space overheads imposed for storing the CPG.
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Figure 5: Performance overhead over the native execution
with increasing number of threads. The corresponding work
measurement plot is available here: web-link.

For the snapshot facility, the library periodically takes
a consistent cut of the CPG. A cut is consistent if, for any
synchronization operation on object S in the trace, acquire(S)
operation being in the cut implies that corresponding
release(S) is also included in the cut [15]. To achieve so, we
make use of modeling synchronization primitives as acquire
and release operations (described in §IV). Each thread invokes
the snapshot operation on the latest synchronization event
(acquire or release) in the recorded trace.

We implemented the consistent cut facility using Intel
PT interface for perf, which provides mechanism for the
full trace, and a snapshot mode. When the full trace is
enabled then the kernel does not overwrite the data that the
user-space has not collected yet. This results in gaps in the
trace, if the user-space process is not fast enough in collecting
the log data. Whereas, in the snapshot mode, however, the
old data in this ring buffer is constantly overwritten so that
an application can start and stop tracing around a certain
event. The perf tool exposes this feature by installing a
handler on signal SIGUSR2, which triggers the start of a
trace. INSPECTOR makes use of the signal and forwards it to
perf to record a consistent snapshot of the trace based on the
aforementioned checkpointing mechanism. Using this signal,
we implemented a simple ring buffer with a configurable
number of slots (each slot size is set to 4MB). As the user (or
the application using INSPECTOR) finishes the live analysis
on the recorded snapshots of the CPG, we reuse those slots
for storing the new incoming snapshots of the CPG.

VII. EVALUATION

In this section, we present an experimental evaluation of
INSPECTOR based on the implementation described in §V.
Our evaluation answers the following questions.

o What performance overheads does INSPECTOR impose

for recording the provenance graph? (§VII-A)

« What are the sources for these overheads? (§VII-B)

« How do these overheads scale with increase in the size

of the input data? (§VII-C)

o What are the space overheads for the CPG? (§VII-D)
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Figure 6: Performance overheads breakdown with 16
threads—except for streamcluster, where the breakdown for
15 threads is shown. The corresponding work measurement
plot is available here: web-link.

Experimental platform. We used an Intel Xeon processor
based on Broadwell micro-architecture as our host machine.
The host system consists of 8 cores (16 hyper-threads) of
Intel(R) Xeon(R) CPU Processor D-1540 (12M Cache, 2.00
GHz) and 32 GB of DRAM main memory. The host machine
is running Linux with kernel 4.3.0 in 64-bit mode.

Applications and dataset. We evaluated INSPECTOR using
applications from two multithreaded benchmark suites:
Phoenix 2.0 [33] and PARSEC 3.0 [12]. Table 7 lists the
applications used for the evaluation along with the input
data and benchmark parameters.

Performance metrics: Time and Work. For each run, we
consider two types of measures: time and work. Time refers to
the amount of (end-to-end) run-time to complete the parallel
computation. Work refers to the total amount of computation
performed by all threads and is measured as the overall
CPUs utilization for all threads.

Measurements. All applications were compiled using
GCC 5.2.1 compiler with 03 optimization flag. For all
measurements, we report the average over 6 runs with
minimum and maximum values discarded (truncated mean).

We measured work and time numbers forboth pthreads
and INSPECTOR executions with the same number of threads.
For time measurements, we report the run-time comparison
between the native pthreads execution, and INSPECTOR ex-
ecution. To measure work, we used the CPU accounting con-
troller in cgroups to account the CPU usage of all threads.

Finally, the log produced by perf was written to /tmp
on tmpfs to allow high throughput.

Additional results. Due to the space limitation, the work

measurements are covered in a technical report [35] and also
available here: web-link.

A. Performance Overheads for Data Provenance

First, we explain the provenance overheads imposed by
INSPECTOR w.r.t. the native pthreads execution. Figure 5
shows the provenance overheads of INSPECTOR wir.t. the



native pthreads execution with varying number of
threads (from 2 to 16 threads). As expected, the provenance
overheads increases with the increase in the number of
threads. This is because the shared memory commit (§V-A)
takes longer time with a higher number of threads, as each
thread spends less time computing on the input data.

The experiment shows that the provenance overheads
using INSPECTOR vary across applications. We observe that
a majority of applications (9/12) have a reasonable overhead
between 1x up to 2.5x wir.t. the native execution. However,
three applications have exceptionally high overheads: canneal,
reverse_index, and kmeans. The high overheads is explained
as follows: canneal modifies a lot of memory pages that
leads to a high number of page faults for deriving read
and write sets (see Table 7). Whereas, reverse_index does a
lot of small memory allocations across threads leading to
a large number of segmentation faults (details omitted —
see web-link). Finally, krmeans creates more than 400 threads
until the clusters co-efficient converges, when we specify
500 as the parameter for the iterative convergence algorithm
(see Table 7). Since, creating a process takes more time than
creating a thread, we see a slowdown in kmeans.

On the other hand, linear_regression performs better
than pthreads, which is explained by the fact that our
implementation of threads as processes (§V) avoids false
sharing, as previously noted by Sheriff [24], which leads to
improved performance.

Lastly, in the case of streamcluster, we were limited by our
physical memory to store the log in tmpfs for 16 threads
(see §VII-D). Therefore, we also show the overheads with
14 and 15 threads, where the provenance log can fit into
the main memory. To better understand the breakdown of
provenance, we chose 15 threads for streamcluster in §VII-B.

B. Performance Overheads Breakdown

Next, we investigated the breakdown of the provenance
overheads. Recall that our system implementation has two
major components: (1) the threading library (§V-A), and (2)
the OS support for Intel PT (§V-B). Figure 6 shows the break-
down of overheads with 16 threads normalized to the native
pthreads execution. We quantify the breakdown as the time
taken by the threading library and the OS support for Intel
PT. The result shows an interesting pattern: the applications
with unreasonably high overheads (canneal, reverse_index,
and krmeans) spend a majority of time in the threading library
for the above mentioned reasons. Whereas, the overheads for
tracing the control flow due to Intel PT is a dominant factor
for the other applications. These results highlight that for a
majority of applications (9/12) the underlying hardware is
still a bottleneck to achieve low provenance overheads.

C. Scalability with the Input Data

In addition to scalability w.r.t. threads, we also measured
the performance overheads with increase in the size of the
input data. For that, we report the performance overheads
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Application Dataset / Parameters Page faults ‘ Faults/sec
blackscholes 16 in_64K.txt prices.txt 2.49E+04 2.58E+04

canneal 15 10000 2000 100000.nets 32 2.11E+06 21.57E+04
histogram large bmp 4.27E+04 10.78E+04
kmeans -d 3 -¢ 500 -p 50000 -s 500 1.16E+06 13.99E+04
linear_regression| key_file_500MB.txt 2.88E+04 11.11E+04
matrix_multiply | 2000 2000 2.32E+05 11.65E+04
pca -r 4000 -c 4000 -s 100 5.34E+05 10.22E+04
reverse_index datafiles 2.61E+04 10.35E+04
streamcluster 25110105 none output.txt 16 | 1.64E+05 1.163E+04
string_match key_file_500MB.txt 3.11E+04 1.993E+04
swaptions -ns 128 -sm 50000 -nt 16 4.66E+04 1.207E+04
word_count word_100MB.txt 1.56E+05 54.34E+04

Figure 7: Runtime statistics for all benchmarks with 16
threads (Detailed log analysis is available here: web-link).

for four applications that are available with three input sizes:
small (S), medium (M), and large (L). These four applications
are: histogram, linear_regression, string_match, and word_count.

In this experiment, we kept the number of threads to a
constant (16 threads), and we varied the input sizes for these
applications. Figure 8 shows the results for our experiment.
The bar plot shows the performance overheads w.r.t. to the
native pthreads execution on the Y1-axis for three input
sizes (S, M, L). For the reference, the input sizes are also
shown by a line plot in the same figure on the Y2-axis.

The result shows that the gap between pthreads and
INSPECTOR narrows with bigger input sizes. This is due to the
fact that most applications use a data-parallel programming
design pattern for parallelization, where the main threads
divides the input data evenly between the worker threads. As
the input size increases, each thread needs to perform more
work (or compute on a larger input size) than the time spent
for synchronization. As a result, each thread spends relatively
more time outside the shared-memory commit to compute
on the data, and thus, it results in improved performance.

D. Space Overheads for the Provenance Graph

Finally, we present the space overhead for storing the
provenance graph. A major limitation of using Intel PT is
that it produces a large amounts of trace data. Furthermore,
the threading library also produces trace data to record the
data and schedule dependencies. Table 9 shows the space
overhead for all applications with 16 threads. Note that we
report the combined space overheads for INSPECTOR, the
individual breakdown between the threading library and the
OS support for Intel PT is available online: web-link.

The space overheads vary across applications: it can be as
low as 183MB for linear_regression and as high as 29.3GB for
streamcluster. The result shows a strong correlation between
the log bandwidth and branch instructions with a correlation
coefficient of 0.89, which was expected, because the log
consists of taken branches.

Fortunately, the provenance log written by perf turns
out to be highly compressible. We were able to achieve
a compression ratio of between 6x and 37x times using
the Iz4 compression algorithm. Furthermore, the snapshot
facility (described in §VI) restricts the active area of space
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Figure 8: Scalability of overheads with increase in the
input data sizes with 16 threads. The corresponding work
measurement plot is available here: web-link.

usage, and the user can reuse the space in the ring buffer
after analyzing (or collecting) the provenance graph.

VIII. D1sCcUSSION: CASE-STUDIES

While data provenance is useful across a wide range
of workflows, we discuss three active projects where
INSPECTOR is being used to increase the dependability,
security, and efficiency of software systems.

Dependability: Debugging programs [16]. Multithreaded
programs are notoriously difficult to debug because of the
inherent non-deterministic thread scheduling by the OS. Cur-
rently, debugging techniques rely on examining the memory
state during the program execution or by analyzing core
dumps after the crash. These techniques mainly target “what”
is the state of the program without revealing much about
“why” is it the state of the program is like that. Our library
can be extended to aid the developers to better understand
the failed execution by augmenting the existing debugging
techniques with the provenance of the memory state.
Security: Dynamic Information Flow Tracking (DIFT) [34].
DIFT protects software against data leaks by restricting the
suspicious 1/O calls. Our library can be extended to support
DIFT by carrying a taint for the sensitive data as part of the
provenance, and restricting the output activities at the level
of system calls. In particular, a policy checker can analyze the
taint provenance to disallow sensitive data leaks. The policy
checker can be embedded at the level of glibc wrappers
for the output system calls. Note that we currently target
accidental or buggy, but not a malicious threat model because
our library is a user-space solution.

Efficiency: Memory management for NUMA [22]. The
recent advancement in NUMA architectures offers a wide
range of configurations for the interconnects with varying
memory bandwidth, and it is unclear how these different con-
figurations affect the OS support for memory management.
Our library can be extended to investigate the potential im-
pact of interconnect topologies on memory management, and
can be extended to optimize the memory layout for a given
interconnect topology. This optimization requires the memory
access patterns that could be easily derived from the CPG.
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Provenance log details [MB] Bandwidth | Branch instr.
Application Size Compressedl Ratio [MB/sec] [Instr/sec]
blackscholes 851 57.3 15x 882 249E+09
canneal 5343 315.0 17x% 547 1.55E+09
histogram 381 11.3 34x 961 4.17E+09
kmeans 11900 522.0 23x 1438 5.79E+09
linear_regression| 183 55 34x 707 3.81E+09
matrix_multiply | 2101 97.0 22x 105 4.05E+08
pca 1900 116.0 16x 364 1.42E+09
reverse_index 192 57 34x 764 2.87E+09
streamcluster 29300 787.0 37x 2083 7.78E+09
string_match 2751 430.0 6x 1763 5.61E+09
swaptions 7061 929.0 8x 1830 4.84E+09
word_count 4121 508.0 8x 1435 2.80E+09

Figure 9: Space overheads for all benchmarks with 16 threads.

IX. RELATED WORK

Data provenance is a well-studied concept because of it’s
wide applicability in different complex computer systems.
Next, we review the related work from different domains.

Database systems. Provenance has been shown to be
important in databases for materialized views, probabilistic
databases, data integration, and curated databases (see a
survey paper for more details [13]). Almost, all existing
provenance work in databases leverage the explicit database
schema and structured layout of the input records in tables
to build the provenance graph; whereas, INSPECTOR does
not assume any structured layout of the input data.

“Big Data” analytics. Data provenance is being increasingly
used in “big data” processing for debugging complex
workflows [29, 36-38], and also for incremental
computation [5-7, 9-11, 21]. In particular, these systems
construct the provenance graph based on the data-flow
graph generated from the data-parallel programming
model. Instead of relying on the constrained task-based
programming model, INSPECTOR derives the graph
automatically for shared-memory multithreaded programs.

Distributed and network systems. Many distributed and
network systems propose provenance techniques for
tracing the execution of distributed protocols to provide
accountability, fault detection, forensics, verifiability, network
debugging, negative provenance [39—41]. These systems
leverage the semantics of distributed protocols to derive
a state-machine, and capture the lineage information by
manually modifying the state-machine. Instead, we do
not require any protocol-specific state-machine. Albeit, we
currently do not support distributed systems.

Storage systems. Storage systems, such as PASS [2§],
supporting provenance collect meta-data of newly created
objects in the system (via the OS support), and maintain their
lineage information such as the chain of ownership and the
transformations performed on objects. In contrast to PASS
that tracks objects in storage systems, our focus is on tracing
the lineage of shared-memory accesses in multithreaded
programs at the granularity of memory pages. Like PASS, we
also rely on the OS support for tracking of memory pages.

Memory tracing. Our approach is complementary to
numerous run-time [30] and compile-time [26] tools that



allow fine-grained byte-level memory read and writes made
by threads. In contrast, our tool makes a trade-off of memory
tracking at the granularity of memory pages, and uses a
combination of OS support and the new ISA extensions to
track the data flow for the entire program.

Operating systems. Linux Provenance Module (LPM) [3]
provides OS support to collect system-wide provenance. In
contrast to LPM, INSPECTOR is a user-space solution and does
not require any modifications to the underlying OS. Secondly,
unlike LPM, which collects provenance at the granularity of a
process, we collect data provenance at a finer granularity of a
thread. On the other hand, LPM benefits from the integrated
OS approach to secure the provenance information.

Programming languages. Programming languages
researchers develop language-based provenance approaches
relying on a new language with special data-types. These
language-based approaches derive the provenance graph
using techniques such as self-adjusting computation [2].
In contrast, our work supports existing programs without
relying on any language-level support or a new type system.

X. CONCLUSIONS

In this paper, we presented INSPECTOR, a data provenance
library for multithreaded programs. Our approach targets ex-
isting executables, relies on OS-specific mechanisms and new
ISA extensions of Intel PT to efficiently build the Concurrent
Provenance Graph (CPG). The CPG records control, data, and
schedule dependencies for the shared-memory multithreaded
program execution. Our solution is straightforward to
deploy: it simply replaces the pthreads library, allowing
existing applications to benefit from our approach with no re-
compilation or code changes. INSPECTOR’s source code is pub-
licly available for further use in a wide-range of workflows
for data provenance: https://github.com/Mic92/inspector.
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